Math 1: Calculus with Algebra Fall 2015

Quiz 1

Name: Answer Key

Instructions: (points) This quiz consists of 5 problems covering material from the first week of class. Credit is awarded for **correct solutions** in which you **show your work**. You will have 30 minutes to complete this quiz.

For this quiz, we will consider the following functions:

$$f(x) = \sqrt{x+4}, \qquad g(x) = x^2 - 4, \qquad h(x) = \frac{1}{3}x$$

(5^{pts}) **1.** Evaluate the following expressions:

- (a) (f+g)(5)Solution: By definition of function addition, $(f+g)(5) = f(5) + g(5) = \sqrt{5+4} + (5^2-4) = 3 + (25-4) = 3 + 21 = 24.$
- (b) $(f \cdot g)(0)$

Solution: By definition of function multiplication, $(f \cdot g)(0) = f(0) \cdot g(0) = \sqrt{4}(0^2 - 4) = 2(-4) = -8.$

(c) $\left(\frac{g}{f}\right)$ (3)

Solution: By definition of function quotients, $\left(\frac{g}{f}\right)(3) = \frac{g(3)}{f(3)} = \frac{3^2 - 4}{\sqrt{3} + 4} = \frac{9 - 4}{\sqrt{7}} = \frac{5}{\sqrt{7}}.$

(5^{pts}) **2.** Complete each of the following:

(a) Determine which of the following sequences are the same as the sequence $\{0, 1, 0, 1, ...\}$. (A) $\{1 + (-1)^n\}_{n=1}^{\infty}$ (B) $\{-1 + (-1)^n\}_{n=0}^{\infty}$

$$(\mathscr{C}) \{a_n\}_{n=1}^{\infty} \text{ where } a_n = \begin{cases} 0 & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even} \end{cases} (D) \{a_n\}_{n=1}^{\infty} \text{ where } a_n = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd} \end{cases}$$

(b) Write out the first 5 terms of the sequence $\{3n+2\}_{n=2}^{\infty}$. Solution: The first 5 terms are: 8, 11, 14, 17, 20. – Page 2 of –

(5^{pts}) 3. Use the functions from the beginning of the quiz to complete each of the following:
(a) Find the domain of f.

Solution: The domain of f is $[-4, \infty)$.

- (b) Find the range of f.Solution: The range of f is [0,∞).
- (c) Find the domain of \$\frac{f}{h}\$.
 Solution: The value h is 0 at x = 0 and the domain of h is ℝ. From part (a), f is defined on [-4,∞). So the function \$\frac{f}{h}\$ has domain [-4,0) ∪ (0,∞)\$.
- (5^{pts}) 4. Use the functions from the beginning of the quiz to find and simplify the following expressions:
 (a) (f h)(x)

Solution: By definition,
$$(f \circ h)(x) = f(h(x)) = f\left(\frac{1}{3}x\right) = \sqrt{\frac{1}{3}x} + 4.$$

- (b) $\left(\frac{f}{g}\right)(x)$ Solution: By definition, $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x+4}}{x^2-4}.$
- (c) $(f \circ g)(x)$ Solution: By definition, $(f \circ g)(x) = f(g(x)) = f(x^2 - 4) = \sqrt{(x^2 - 4) + 4} = \sqrt{x^2} = |x|.$
- (4^{pts}) **5.** *True* or *False*. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.
 - (a) **F** If k is a function, then k(a + b) = k(a) + k(b). Solution: Consider the function $k(x) = x^2$ and let a = 1 and b = 1. Then $k(1+1) = k(2) = 2^2 = 4$ but $k(1) + k(1) = 1^2 + 1^2 = 2$.
 - (b) **F** If k is a function and k(a) = k(b) then a = b. Solution: Consider the function $k(x) = x^2$ and let a = -2 and b = 2. Then $k(a) = (-2)^2 = 4$ and $k(b) = 2^2 = 4$. So k(a) = k(b) but $a \neq b$.
 - (c) $\underline{\mathbf{T}}$ A vertical line intersects the graph of a function at most once. Solution: This is the content of the Vertical Line Test.
 - (d) **F** If x is any real number then $\sqrt{x^2} = x$. Solution: If x < 0 then $\sqrt{x^2} = -x$. For example, if x = -1 then $\sqrt{x^2} = \sqrt{(-1)^2} = \sqrt{1} = 1 = -x$.

M1/Q1