Quiz 1

Instructions: (points) This quiz consists of 5 problems covering material from the first week of class. Credit is awarded for correct solutions in which you show your work. You will have 30 minutes to complete this quiz.

For this quiz, we will consider the following functions:

$$
f(x)=\sqrt{x+4}, \quad g(x)=x^{2}-4, \quad h(x)=\frac{1}{3} x .
$$

($\left.5^{\text {pts }}\right)$ 1. Evaluate the following expressions:
(a) $(f+g)(5)$

Solution: By definition of function addition, $(f+g)(5)=f(5)+g(5)=\sqrt{5+4}+\left(5^{2}-4\right)=$ $3+(25-4)=3+21=24$.
(b) $(f \cdot g)(0)$

Solution: By definition of function multiplication, $(f \cdot g)(0)=f(0) \cdot g(0)=\sqrt{4}\left(0^{2}-4\right)=$ $2(-4)=-8$.
(c) $\left(\frac{g}{f}\right)$

Solution: By definition of function quotients, $\left(\frac{g}{f}\right)(3)=\frac{g(3)}{f(3)}=\frac{3^{2}-4}{\sqrt{3+4}}=\frac{9-4}{\sqrt{7}}=\frac{5}{\sqrt{7}}$.
2. Complete each of the following:
(a) Determine which of the following sequences are the same as the sequence $\{0,1,0,1, \ldots\}$.
(A) $\left\{1+(-1)^{n}\right\}_{n=1}^{\infty}$
(B) $\left\{-1+(-1)^{n}\right\}_{n=0}^{\infty}$
(C) $\left\{a_{n}\right\}_{n=1}^{\infty}$ where $a_{n}= \begin{cases}0 & \text { if } n \text { is odd } \\ 1 & \text { if } n \text { is even }\end{cases}$
(D) $\left\{a_{n}\right\}_{n=1}^{\infty}$ where $a_{n}= \begin{cases}0 & \text { if } n \text { is even } \\ 1 & \text { if } n \text { is odd }\end{cases}$
(b) Write out the first 5 terms of the sequence $\{3 n+2\}_{n=2}^{\infty}$.

Solution: The first 5 terms are: $8,11,14,17,20$.
($\left.5^{\text {pts }}\right)$ 3. Use the functions from the beginning of the quiz to complete each of the following:
(a) Find the domain of f.

Solution: The domain of f is $[-4, \infty)$.
(b) Find the range of f.

Solution: The range of f is $[0, \infty)$.
(c) Find the domain of $\frac{f}{h}$.

Solution: The value h is 0 at $x=0$ and the domain of h is \mathbb{R}. From part (a), f is defined on $[-4, \infty)$. So the function $\frac{f}{h}$ has domain $[-4,0) \cup(0, \infty)$.
($\left.5^{\mathrm{pts}}\right)$ 4. Use the functions from the beginning of the quiz to find and simplify the following expressions:
(a) $(f \circ h)(x)$

Solution: By definition, $(f \circ h)(x)=f(h(x))=f\left(\frac{1}{3} x\right)=\sqrt{\frac{1}{3} x+4}$.
(b) $\left(\frac{f}{g}\right)(x)$

Solution: By definition, $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{\sqrt{x+4}}{x^{2}-4}$.
(c) $(f \circ g)(x)$

Solution: By definition, $(f \circ g)(x)=f(g(x))=f\left(x^{2}-4\right)=\sqrt{\left(x^{2}-4\right)+4}=\sqrt{x^{2}}=|x|$.
$\left(4^{\text {pts }}\right)$ 5. True or False. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.
(a) $\quad \mathbf{F}$ If k is a function, then $k(a+b)=k(a)+k(b)$.

Solution: Consider the function $k(x)=x^{2}$ and let $a=1$ and $b=1$. Then $k(1+1)=$ $k(2)=2^{2}=4$ but $k(1)+k(1)=1^{2}+1^{2}=2$.
(b) $\quad \mathbf{F} \quad$ If k is a function and $k(a)=k(b)$ then $a=b$.

Solution: Consider the function $k(x)=x^{2}$ and let $a=-2$ and $b=2$. Then $k(a)=(-2)^{2}=4$ and $k(b)=2^{2}=4$. So $k(a)=k(b)$ but $a \neq b$.
(c) \mathbf{T} A vertical line intersects the graph of a function at most once.

Solution: This is the content of the Vertical Line Test.
(d) $\quad \mathbf{F} \quad$ If x is any real number then $\sqrt{x^{2}}=x$.

Solution: If $x<0$ then $\sqrt{x^{2}}=-x$. For example, if $x=-1$ then $\sqrt{x^{2}}=\sqrt{(-1)^{2}}=$ $\sqrt{1}=1=-x$.

